
TICAM Report 02-34

Analysis of a subdomain-based error estimator

for finite element approximations

of elliptic problems

S. Prudhomme, F. Nobile, L. Chamoin, and J.T. Oden

Texas Institute for Computational and Applied Mathematics
The University of Texas at Austin

Austin, Texas 78712

Abstract

In this paper we analyse a sub-domain residual error estimator for finite
element approximations of elliptic problems. It is obtained by solving local
problems on patches of elements in weighted spaces and provides for an upper
bound on the energy norm of the error when the local problems are solved in
sufficiently enriched discrete spaces. A guaranteed lower bound on the error
is also derived by a simple postprocess of the solutions to the local problems.
Numerical tests show very good effectivity indices for both the upper and lower
bounds and a strong reliability of this estimator even for coarse meshes.

1 Introduction

The use of residual-based methods for a posteriori estimation of errors in finite el-
ement approximations of elliptic boundary-value problems has become important
in applications as methods for assessing quality of numerical solutions and provid-
ing a basis for adaptive meshing. A survey of such methods can be found in the
monograph of Ainsworth and Oden [1]. Among early residual methods was the
subdomain-residual method of Babuška and Rheinboldt [3], which involves solving
local problems on patches of elements for which the local residuals appear as data.

One issue that frequently complicates residual-based methods is the treatment of
boundary conditions on elements or patches in formulating the local problems for er-
ror measures. In the equilibrated element residual methods of Ladevèze and Leguil-
lon [11] and Ainsworth and Oden [2], Neumann conditions are used and the residual
fluxes are equilibrated for each element. This process can lead to good error estima-
tors, but is generally expensive and rarely used in three-dimensional applications.
The use of homogeneous Dirichlet boundary conditions, however, lead to global lower
bounds, and often results in estimators that do not deliver acceptable accuracy for
use in adaptive mesh strategies.

More recently, variations in the subdomain-residual method have been proposed by
Carstensen and Funken [6] and Morin, Nochetto and Siebert [12] (see also Datta
[8]), that employ a partition of unity generated by the usual finite element basis



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2005 2. REPORT TYPE 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Analysis of a subdomain-based error estimator for finite element
approximations of elliptic problems 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Office of Naval Research,One Liberty Center,875 North Randolph Street
Suite 1425,Arlington,VA,22203-1995 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

33 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



2 Prudhomme, Nobile, Chamoin and Oden

functions for triangular and quadrilateral meshes. By weighting the local bilinear
forms using such partitions of unity, local problems for error indicators are formed
on the support (patch-domains) of the basis functions, and the weight functions
naturally vanish on the patch boundaries. This provides a natural and convenient
framework for overcoming problems of assigning boundary averages or equilibrating
residual fluxes on the boundaries.

In the present work, we present a detailed analysis of a variant of the method of
Morin et al. [12] and demonstrate its performance on several model problems on
one- and two-dimensional domains. We develop a new computable error estimator
and derive both upper and lower bounds on the global error measured in the energy
norm. Our numerical experiments suggest the method is easily implemented for
elliptic problems and can yield excellent bounds on the global error.

2 Model problem and preliminaries

Let Ω be an open bounded polygonal domain in Rd, d = 1 or 2, with boundary ∂Ω
and let u: Ω → R be the solution of the problem

−∆u+ cu = f in Ω

u = 0 on ∂Ω
(1)

where f ∈ L2(Ω) and c is a positive constant. The weak formulation of Problem (1)
reads:

Find u ∈ H1
0 (Ω) such that

∫

Ω
(∇u · ∇v + cuv) =

∫

Ω
fv ∀ v ∈ H1

0 (Ω) (2)

where H1
0 (Ω) is the usual Sobolev space of functions which are in L2(Ω) with square

integrable derivatives and that vanish on ∂Ω. The bilinear form B(·, ·) defined on
H1

0 (Ω) ×H1
0 (Ω) by

B(u, v) =

∫

Ω
(∇u · ∇v + cuv) (3)

is symmetric, continuous and coercive. It thus defines an inner product in H 1
0 (Ω)

and induces the so-called energy norm |||v||| =
√
B(v, v). Introducing the bounded

linear form F (·) defined on H1
0 (Ω) as

F (v) =

∫

Ω
fv,

the Lax-Milgram Theorem (see e.g. [10]) allows us to establish that the problem:

Find u ∈ H1
0 (Ω) such that B(u, v) = F (v), ∀ v ∈ H1

0 (Ω) (4)
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is well-posed in the sense that it admits a unique solution u ∈ H 1
0 (Ω), which de-

pends continuously on the data. Moreover, u is the solution of (1) in the sense of
distributions.

Let τh be a regular finite element partition of Ω made up of triangular or quadrilat-
eral elements (in 2D). We denote by hK the diameter of each element K of the mesh
τh and by ρK the diameter of the largest circle inscribed in K, if K is a triangle.
A similar definition holds if K is a quadrilateral [1, 7]. The mesh is assumed to be
regular, i.e. there exists a positive constant κ > 0 such that:

κK =
hK

ρK
≤ κ ∀ K ∈ τh. (5)

We then introduce the finite dimensional space Vh
k ⊂ H1

0 (Ω) that is the usual space
of Pk (for meshes of triangles) or Qk (for meshes of quadrilaterals) continuous finite
elements (see e.g. [7] or [10] for a precise definition). The finite element approxima-
tion of problem (4) reads:

Find uh ∈ Vh
k such that B(uh, v) = F (v) ∀ v ∈ Vh

k . (6)

Denoting the approximation error in uh by e = u−uh, we have the following equation
for the error

B(e, v) = B(u− uh, v) = F (v) −B(uh, v) ≡ R(v) ∀ v ∈ H1
0 (Ω). (7)

where R(.) is called the residual functional. Note that the well-known orthogonality
property reads:

R(v) = B(e, v) = 0 ∀ v ∈ Vh
k. (8)

Lemma 1 With above assumptions and definitions, the following equality holds:

|||e||| = sup
v∈H1

0
(Ω)

|R(v)|
|||v||| ≡ ‖R‖∗ (9)

where ‖R‖∗ is the norm of the residual in H−1(Ω).

Proof: Using (7), we have

|||e||| =
B(e, e)

|||e||| =
R(e)

|||e||| ≤ sup
v∈H1

0
(Ω)

|R(v)|
|||v||| .

Furthermore, from the continuity of B(·, ·), |R(v)| = |B(e, v)| ≤ |||e||| |||v||| for all
v ∈ H1

0 (Ω), which establishes the assertion. �

Note that the equality in relation (9) holds because the bilinear form B(·, ·) is
positive definite and symmetric. In more general cases, we should expect to have
only an equivalence between the norm of the residual and the norm of the error.
Relation (9) will be useful in deriving a lower bound on the error.
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Figure 1: Representation of the function φi on ωi for triangular (left) and quadran-
gular (right) meshes.

3 Upper bound estimate on the error

Let φi be the set of Lagrangian piecewise linear (for triangles) or piecewise bilinear
(for quadrilaterals) basis functions. The support of each φi is denoted by ωi and
will be referred to as the patch of elements connected to node i of the mesh (see
Fig. 1 for a representation of φi and ωi in two dimensions). Subsequently, an interior
patch ωi will define a patch for which node i is not located on the boundary ∂Ω.
Similarly, a boundary patch ωi is a patch for which node i is on ∂Ω.

We will use the fact that the functions φi form a so-called partition of unity
∑

1≤i≤N

φi(x) = 1 ∀ x ∈ Ω (10)

whereN denotes the total number of nodes of τh. Furthermore, let hi = maxK∈ωi
hK

and ρi = minK∈ωi
ρK . The regularity of the partition τh is inherited by the patches

ωi and we have (see Theorem 6.1 in [1]):

∃ C0 > 0: κi =
hi

ρi
≤ C0 κ ∀ i = 1, ...N. (11)

Note that upon inserting (10) into (7), we have

B(e, v) = R(v
∑

1≤i≤N

φi) =
∑

1≤i≤N

R(vφi) ∀ v ∈ H1
0 (Ω). (12)

Let us introduce, now, on each patch ωi, the bilinear form

Bφi
(u, v) =

∫

ωi

φi(∇u · ∇v + cuv) (13)

with associated norm |||v|||φi
=
√
Bφi

(v, v), and define the space for each i =
1, . . . , N as

W (ωi) = W(ωi)
‖·‖φi
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where for an interior patch ωi:

W(ωi) = C1(ωi)

and for a boundary patch ωi:

W(ωi) = {v ∈ C1(ωi), v = 0 on ∂ωi ∩ ∂Ω}.

Next, we will formulate and solve the following N local problems, over each patch
ωi, for local error functions ζi ∈W (ωi)

Bφi
(ζi, ψ) = R(ψφi) ∀ ψ ∈W (ωi), 1 ≤ i ≤ N. (14)

We define the global error estimator

ε̃ =

√ ∑

1≤i≤N

Bφi
(ζi, ζi). (15)

We show in the following that ε̃ provides for an upper bound on the error |||e|||.

Remark 1 The left-hand side and right-hand side of (14) can be explicitly written
as:

Bφi
(ζi, ψ) =

∫

ωi

(φi∇ζi · ∇ψ + cφiζiψ),

R(ψφi) =

∫

ωi

fψφi −
∫

ωi

(∇uh · ∇(ψφi) + cuhψφi).

(16)

Whenever ωi is an interior patch, no boundary conditions are prescribed on ∂ωi in
(14). Thus, the local problems (14) are of “Neumann” type. In the case c = 0, the
solution is defined up to a constant and we should expect to have a compatibility
condition on the right-hand side. Indeed, thanks to the Galerkin orthogonality (8),
it happens that for ψ a constant function on ωi

R(ψφi) = ψR(φi) = 0. (17)

Thus, the compatibility condition is always satisfied. In order to fix the constant, we
seek a solution of (14) in the space

◦
W (ωi) = {v ∈W (ωi),

∫

ωi

vφi = 0} (18)

instead of W (ωi).

Remark 2 As written in (16), the residual does not contain any integrals of the
fluxes along the element interfaces. As presented, it is shown that it is not necessary
to perform the integration by parts as most authors do [6, 12].
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In Lemma 3, we will prove the well-posedness of the local problems (14). Toward this
goal, we state Lemma 2 below. Its proof has been given in [12] for a triangular mesh
and is provided in the Appendix in the case of quadrangular meshes. We remark that
the proof varies substantially when dealing with triangles or quadrilaterals. Indeed,
the weighting function φi is linear for the first type of elements. For quadrilateral
elements, φi is bilinear which means that the function can be quadratic along certain
directions in the elements, making the proof a little more complex.

Lemma 2 (Weighted Poincaré inequality) Let hi be the maximum size of the
elements in the patch ωi. For any function ζi ∈ W (ωi) that satisfies the condition∫
ωi
ζiφi = 0 whenever ωi is an interior patch, there exists a constant C, independent

of hi, but dependent of κ, such that

‖ζi‖L2(ωi) ≤ Chi‖∇ζi‖φi
, (19)

where ‖ · ‖φi
= ‖ · φ1/2

i ‖L2(ωi).

Lemma 3 Problem (14) is well posed for any given hi > 0.

Proof: We first proof this lemma for an interior patch ωi. The bilinear form Bφi
(·, ·)

is an inner product on W (ωi) and thus is continuous and coercive. The assertion
then follows from the Riesz representation theorem if we can show that the functional
R(ψφi) is bounded in W (ωi) with respect to the norm |||ψ|||φi

.

Let us first remark that if c = 0, all functions ψ ∈
◦
W (ωi) satisfy the condition∫

ωi
ψφi = 0. On the other hand, if c 6= 0, thanks to the Galerkin orthogonality (8),

we have R(φi) = 0 and, for all ψ ∈W (ωi),

R(ψφi) = R
(

(ψ −
∫
ωi
ψφi∫

ωi
φi

)φi

)
= R(ψ̃φi),

where ψ̃ satisfies now the condition
∫
ωi
ψ̃φi = 0. Hence,

|R(ψφi)| = |R(ψ̃φi)| =

∣∣∣∣
∫

ωi

fψ̃φi −
∫

ωi

(∇uh · ∇(ψ̃φi) + cuhψ̃φi)

∣∣∣∣

≤
∣∣∣∣
∫

ωi

fψ̃φi

∣∣∣∣+
∣∣∣∣
∫

ωi

(φi∇uh · ∇ψ̃ + cuhψ̃φi)

∣∣∣∣+
∣∣∣∣
∫

ωi

ψ̃∇uh · ∇φi

∣∣∣∣

≤ ‖f‖φi
‖ψ̃‖φi

+ ‖∇uh‖φi
‖∇ψ̃‖φi

+ c‖uh‖φi
‖ψ̃‖φi

+

∣∣∣∣
∫

ωi

ψ̃∇uh · ∇φi

∣∣∣∣ .
(20)

Let us remark now that

‖ψ̃‖φi
≤ 2‖ψ‖φi

. (21)
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Indeed, if we set g =
∫
ωi
ψφi/

∫
ωi
φi, we have

‖g‖2
φi

= g2

∫

ωi

φi =
(
∫
ωi
ψφi)

2

∫
ωi
φi

≤
‖ψ‖2

φi
(
∫
ωi
φi)∫

ωi
φi

= ‖ψ‖2
φi

and clearly,

‖ψ̃‖φi
≤ ‖ψ‖φi

+ ‖g‖φi
≤ 2‖ψ‖φi

.

Thus, noticing that ∇ψ̃ = ∇ψ and using the previous inequality, we have

|R(ψφi)| ≤ 2‖f‖φi
‖ψ‖φi

+ ‖∇uh‖φi
‖∇ψ‖φi

+ 2c‖uh‖φi
‖ψ‖φi

+

∣∣∣∣
∫

ωi

ψ̃∇uh · ∇φi

∣∣∣∣ .

We now need to bound the term
∣∣∣
∫
ωi
ψ̃∇uh · ∇φi

∣∣∣. We have by Hölder’s inequality:

∣∣∣∣
∫

ωi

ψ̃∇uh · ∇φi

∣∣∣∣ ≤ ‖∇φi‖L∞(ωi) ‖∇uh‖L2(ωi) ‖ψ̃‖L2(ωi)

Moreover, a well-known property of Lagrangian basis functions allows us to state
that

‖∇φi‖L∞(K) ≤ C1
κK

ρK
∀K ∈ ωi for K quadrilaterals,

‖∇φi‖L∞(K) ≤
C2

ρK
∀K ∈ ωi for K triangles.

In both cases,

‖∇φi‖L∞(ωi) = max
K∈ωi

‖∇φi‖L∞(K) ≤
C ′

ρi
(22)

where ρi = minK∈ωi
(ρK) and C ′ might depend on the regularity parameter κ of the

partition τh.

Thus, ∣∣∣∣
∫

ωi

ψ̃∇uh∇φi

∣∣∣∣ ≤
C ′

ρi
‖∇uh‖L2(ωi) ‖ψ̃‖L2(ωi)

≤ C ′Chi

ρi
‖∇uh‖L2(ωi) ‖∇ψ̃‖φi

≤ C ′Chi

ρi
‖∇uh‖L2(ωi) ‖∇ψ‖φi

where we have used the weighted Poincaré inequality (19).

Then, we have

|R(ψφi)| ≤ 2‖f‖φi
‖ψ‖φi

+ ‖∇uh‖φi
‖∇ψ‖φi

+ 2c‖uh‖φi
‖ψ‖φi

+
C ′Chi

ρi
‖∇uh‖L2(ωi) ‖∇ψ‖φi
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and noticing that ‖∇ψ‖φi
≤ |||ψ|||φi

and ‖ψ‖φi
≤ c−1/2|||ψ|||φi

, we finally obtain

|R(ψφi)| ≤
(

2√
c
‖f‖φi

+ ‖∇uh‖φi
+ 2

√
c ‖uh‖φi

+
C ′Chi

ρi
‖∇uh‖L2(ωi)

)
|||ψ|||φi

(23)
The proof is thus complete since all the quantities appearing on the right-hand side
are bounded. The same proof is also valid for a boundary patch, without having to
introduce the function ψ̃. �

We now derive an exact upper bound for the error. Using the previous definitions
and the Cauchy-Schwarz inequality, we have for all v ∈ H 1

0 (Ω)

B(e, v) =
∑

1≤i≤N

R(vφi)

=
∑

1≤i≤N

Bφi
(ζi, v)

≤
∑

1≤i≤N

√
Bφi

(ζi, ζi)
√
Bφi

(v, v)

≤
√ ∑

1≤i≤N

Bφi
(ζi, ζi)

√ ∑

1≤i≤N

Bφi
(v, v).

Taking v = e in the previous inequality, noticing that
∑

1≤i≤NBφi
(v, v) = B(v, v)

for any v in H1
0 (Ω), and using the definition of ε̃ in (15), we obtain the following

guaranteed upper bound on the error, i.e.

|||e||| =
√
B(e, e) ≤ ε̃. (24)

However, the quantity ε̃ cannot be computed exactly because the local problems
(14) defined on each patch for ζi are of infinite dimension. We show in the next
section how to approximate these problems in order to derive an a posteriori error
estimator.

4 The a posteriori error estimator

Let P k+p(ωi) denote the finite element space of piecewise polynomials of degree k+p
on the patch ωi and let Pk+p(ωi) = P k+p(ωi)∩W (ωi). Here, p represents the extra
degree with respect to the degree k used to compute the finite element solution uh.

On each patch ωi, we now solve for ηi ∈ Pk+p(ωi) as the solution to the problem

Bφi
(ηi, ψ) = R(ψφi) ∀ ψ ∈ Pk+p(ωi) (25)
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and define the global error estimator

ε =

√ ∑

1≤i≤N

ε2i =

√ ∑

1≤i≤N

Bφi
(ηi, ηi). (26)

The quantities εi =
√
Bφi

(ηi, ηi) represent the local contribution from each patch
ωi to the global error estimator ε.

Remark 3 Although the residual vanishes on Vh
k, we can actually choose p = 0 in

(25) because the term R(ψφi) does not necessarily vanish for ψ ∈ Pk(ωi) due to
the presence of the weighting function φi. However, we expect to get more accurate
estimates as p is increased. Indeed we can verify from Problem (25) that the error
estimator ε should increase as the value of p increases since:

εi = |||ηi|||φi
= sup

v∈Pk+p(ωi)

|R(vφi)|
|||v|||φi

. (27)

Lemma 4 Let V
k+p
h (Ω) be the global finite element space of piecewise polynomials

of degree k + p defined on Ω and vanishing on ∂Ω. Then we have

|||e||| ≤ ε+ 2 inf
v∈

� k+p

h
(Ω)

|||u− v|||. (28)

Proof: On one hand, we have for all v ∈ V
k+p
h (Ω),

|||v − uh|||2 = B(v − uh, v − uh)

= B(e, v − uh) +B(v − u, v − uh)

≤ B(e, v − uh) + |||v − u||| |||v − uh|||.
(29)

On the other hand, using (7) and the Cauchy-Schwarz inequality, we have

B(e, v − uh) = R(v − uh)

=
∑

1≤i≤N

R((v − uh)φi)

=
∑

1≤i≤N

R((v − uh)|ωi
φi)

(30)

where (v−uh)|ωi
denotes the restriction of (v−uh) on ωi. Since (v−uh)|ωi

∈ Pk+p(ωi)
and using (25), we may further write

B(e, v − uh) =
∑

1≤i≤N

Bφi
(ηi, (v − uh)|ωi

)

≤
√ ∑

1≤i≤N

Bφi
(ηi, ηi)

√ ∑

1≤i≤N

Bφi
(v − uh, v − uh)

≤ ε|||v − uh|||.

(31)
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With (29) and (31), we obtain |||v − uh||| ≤ ε + |||v − u||| and |||e||| ≤ |||u − v||| +
|||v − uh||| ≤ ε + 2|||u − v|||. Since the last inequality holds for all v ∈ V

k+p
h (Ω),

inequality (28) is thus established. �

Inequality (28) shows that the estimator ε does not necessarily provide for an upper
bound on the error. However, the quantity 2 inf

v∈
� k+p

h
(Ω)

|||u− v||| should decrease as p

increases, so that ε should be an upper bound for high enough p.

As a final result, we show that the estimator ε is equivalent to the energy norm of
the error.

Lemma 5 There exists a constant C̃ > 1, that depends only on the regularity of the
mesh and on the constant C appearing in Lemma 2, but otherwise independent of h
and p, such that

ε ≤ C̃|||e|||. (32)

Proof: For any i = 1, . . . , N , the function ηiφi is a piecewise polynomial function
that vanishes on the boundary ∂ωi. Let us denote by η̃iφi the extension of ηiφi by
zero over Ω \ωi. Clearly, η̃iφi belongs to H1

0 (Ω) and can be taken as a test function
in the continuous problem (4). Moreover, its gradient will also vanish outside ωi.
We thus have,

∫

ωi

fηiφi =

∫

Ω
fη̃iφi = B(u, η̃iφi) =

∫

ωi

(∇u · ∇(ηiφi) + cuηiφi) .

Hence,

|||ηi|||2φi
= R(ηiφi) =

∫

ωi

fηiφi −
∫

ωi

(∇uh · ∇(ηiφi) + cuhηiφi)

=

∫

ωi

[∇(u− uh) · ∇(ηiφi) + c(u− uh)ηiφi]

= Bφi
(u− uh, ηi) +

∫

ωi

∇(u− uh) · ∇φiηi.

(33)

Let us remark now that the local solution ηi belongs to the space
◦
W (ωi) also in the

case c > 0. Indeed, by taking a constant test function ψ = c̄ in (25) we have

Bφi
(ηi, c̄) = c

∫

ωi

ηic̄φi = R(c̄φi) = c̄ R(φi) = 0,

owing to the Galerkin orthogonality. The local functions ηi then satisfy the weighted
Poincaré inequality,

‖ηi‖L2(ωi) ≤ Chi‖∇ηi‖φi
.

We can proceed in a similar way as in the proof of Lemma 3 to bound the last term
in (33), thus obtaining

|||ηi|||2φi
≤ |||u− uh|||φi

|||ηi|||φi
+ C‖∇(u− uh)‖L2(ωi)‖∇ηi‖φi

,
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where the constant C depends on the constant appearing in the weighted Poincaré
inequality and on the regularity parameter κ of the mesh. Summing over all the
patches ωi and using the discrete Cauchy-Schwarz inequality, we have

ε2 ≤
√ ∑

1≤i≤N

|||u− uh|||2φi

√ ∑

1≤i≤N

ε2i + C

√ ∑

1≤i≤N

‖∇(u− uh)‖2
L2(ωi)

√ ∑

1≤i≤N

ε2i .

That is:

ε ≤ |||u− uh||| + C

√ ∑

1≤i≤N

‖∇(u− uh)‖2
L2(ωi)

. (34)

For each element K of the mesh τh, let us denote NK = {i : K ⊂ ωi}, λK = dimNK

and λ = maxK∈τh
λK . Then, we have

∑

1≤i≤N

‖∇(u− uh)‖2
L2(ωi)

=
∑

1≤i≤N

∑

K⊂ωi

‖∇(u− uh)‖2
L2(K)

=
∑

K⊂τh

λK‖∇(u− uh)‖2
L2(K) ≤ λ|||u − uh|||2

(35)

and the final result (32) is achieved with C̃ = 1 +C
√
λ. �

5 Recovery of a global lower bound on the error

Relation (9) shows that for any function z ∈ H1
0 (Ω), the quantity |R(z)|/|||z|||

provides a lower bound of the error. Here we choose to construct the function z as

z =
∑

1≤i≤N

ηiφi,

ηi being the solution of problems (25). The function z is continuous since the basis
functions φi vanish at the boundaries of all patches; hence, z is in H 1

0 (Ω). This
choice is motivated by the fact that the functions ηi are already available upon
solving the local problems (25).

Furthermore, we note from (25) that:

R(z) = R(
∑

1≤i≤N

ηiφi) =
∑

1≤i≤N

R(ηiφi) =
∑

1≤i≤N

B(ηi, ηi) = ε2.

The lower bound on the error then reduces to:

ηlow =
ε2

|||z||| . (36)

In other words, since ε2 is already known, it suffices to compute the norm |||z||| =
|||∑1≤i≤N ηiφi||| to derive a lower bound on the error.
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Remark 4 As observed in Remark 1, in the case c = 0, the solutions ηi of prob-
lem (25) on an interior patch ωi are obviously defined up to an arbitrary constant.
We note that the upper bound

ε2 =
∑

1≤i≤N

∫

ωi

|∇ηi|2φi

does not depend on this “arbitrary” constant. On the other hand, for the lower
bound ηlow, the quantity

|||z||| =

√∫

Ω
|∇(

∑

1≤i≤N

ηiφi)|2 =

√∫

Ω
(
∑

1≤i≤N

(∇ηiφi + ηi∇φi))2

does depend on the constant. Following the suggestion in Remark 1, we choose the
constant ci as:

ci =

∫
ωi
ηiφi∫

ωi
φi

. (37)

In this manner, ηi − ci ∈ Pk+p(ωi) ∩
◦
W (ωi) and the function z is defined as:

z =
∑

1≤i≤N

(ηi − ci)φi. (38)

6 A strategy for mesh adaptation

In addition to accuracy assessment, a posteriori error estimators can be used as
refinement indicators for mesh adaptation in order to reduce the numerical error.
A simple strategy consists of defining local contributions to the global error and
refining the elements which exhibit large source of error.

For the subdomain-based error estimator proposed here, there are actually two ways
for splitting the global error into sums of local contributions: namely, we can define
patch-wise or element-wise contributions. From (26), we have

ε =

√ ∑

1≤i≤N

ε2i

where εi =
√
Bφi

(ηi, ηi) represents the contribution of the patch ωi to the error
estimate ε. Similarly, we can decompose ε into a sum of element-wise contributions.
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Indeed,

ε =

√ ∑

1≤i≤N

ε2i =

√ ∑

1≤i≤N

∫

ωi

(|∇ηi|2 + cη2
i )φi

=

√√√√√
∑

1≤i≤N


∑

K⊂ωi

∫

K
(|∇ηi|2 + cη2

i )φi




=

√√√√√
∑

K⊂τh


∑

i∈NK

∫

K
(|∇ηi|2 + cη2

i )φi




=

√∑

K⊂τh

ε2K

where, now, the quantity εK represents the element-wise contribution. The pro-
cedure can naturally be applied to the lower bound estimator as well; in fact, we
have:

ηlow =
ε2

|||z||| =
∑

1≤K≤Ne

ε2K
|||z||| =

∑

1≤K≤Ne

εK,low

with εK,low = ε2K/|||z||| the local contribution per element.

In the numerical experiments shown in the next sections, we only consider refine-
ments based on the element-wise contributions (in order to be able to compare our
mesh adaptation procedure with the element residual method). Namely, an element
K ⊂ τh is refined if either

εK
max
K⊂τh

(εK)
≥ Cadap or

εK,low

max
K⊂τh

(εK,low)
≥ Cadap (39)

where Cadap is a user-prescribed constant parameter ranging from zero to one. In
the numerical tests presented in section 8, we have chosen Cadap = 0.5.

7 Numerical experiments in 1D

The primary objective in these examples is to assess the performance of the upper
and lower bound estimates on the numerical error. In all experiments, the quality of
these estimates will be measured in terms of the effectivity index, namely the ratio
between the error estimate and the exact error in the energy norm ||| · |||.
We first consider the two–point boundary–value problem:

−u′′ + cu = f in (0, 1)

u = 0 at x = 0

u′ = 0 at x = 1

(40)

where the constant c will be chosen as either one or zero.
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7.1 Problem with smooth solution

In our first example, we select the load f such that the exact solution (see Fig. 2)
is analytically given by:

u(x) =
27

4

(
(1 − x)(1 − 3x) − 2x(x− 1

3
)(1 − x)2

)
e−(x−1/3)2 .

The finite element approximations are computed using polynomial degrees k =1, 2
or 3 and, for each case, we calculate the upper bound ε and lower bound ηlow setting
the extra degree as p = 0, 1, 2 or 3. The effectivity indices are shown in Figs. 3, 4
and 5 respectively on sequences of uniformly refined meshes.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

 exact solution 

Figure 2: Representation of the exact solution u(x).

We remark first that the effectivity indices are nearly identical for p = 1, 2 or 3. In
other words, this shows that the local problems rapidly “saturate” as p is increased.
More surprisingly, we also observe that most of the results are acceptable when
taking p = 0. This is an important observation as in many existing finite element
codes, there is no access to polynomial shape functions of higher degree than the
ones used for the finite element solution uh. This aspect of the error estimator may
be an advantage over other element residual type methods for which it is necessary
to take p > 0. However, if we choose p = 0, we are not guaranteed that the
quantity ε provides for an upper bound on the error (even as h tends to zero). In
this case, more sophisticated techniques may be envisaged, that aim at recovering
a guaranteed upper bound by estimating the error ‖ζi − ηi‖φi

in the solution of the
local problems, as well, as proposed in [4, 13]. We will not investigate this approach
in the present work.

Another observation deals with the fact that the error bounds barely depend on the
mesh size h (at least when the mesh is not coarse). Furthermore, the effectivity
index of the upper bound decreases as k goes from one to three. In fact, we find an
effectivity index close to 1.22 for k = 1, 1.07 for k = 2 and 1.04 for k = 3. On the
other hand, the lower bound ηlow always provides for effectivity indices very close
to one (even for p = 0) even for coarse meshes..
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Figure 3: Global effectivity index for the upper (left) and lower (right) bounds for
the case k = 1 and c = 0 (top), c = 1 (bottom).

7.2 A variant of the error estimator

In [12], the authors proposed to solve the local problems (25) using homogeneous

Dirichlet boundary conditions. In other words, defining P k+p
0 (ωi) as the subspace

of Pk+p(ωi) such as:

Pk+p
0 (ωi) = {v ∈ Pk+p(ωi), v = 0 on ∂ωi},

they solve for ηi ∈ Pk+p
0 (ωi) such that

Bφi
(ηi, v) = R(vφi) ∀ v ∈ Pk+p

0 (ωi). (41)

Here we compare the error estimators (upper and lower bounds) when using either
Dirichlet or Neumann boundary conditions. For the case c = 1, k = 1, and taking
p = 0 or 1, we obtain the results shown in Fig. 6.

We observe that the effectivity indices for both the upper and lower bounds converge
at a slower rate with respect to the number of degrees of freedom when using ho-
mogeneous Dirichlet boundary conditions. We conclude that the subdomain-based
error estimation method is more reliable when we do not impose any boundary
conditions on the patch boundaries.
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Figure 4: Global effectivity index for the upper (left) and lower (right) bounds for
the case k = 2 and c = 0 (top), c = 1 (bottom).

7.3 Comparison with other error estimators

In this section, we compare the subdomain-based error estimator (SRM for Subdo-
main Residual Method) with other methods: namely, the ZZ recovery-type method
[14, 15], and the Element Residual Method (ERM) [5, 9]. We choose here to
solve (40) with c = 0. Note that the results are in this case the same whether
we use either ERM or the Element Residual Method with the equilibration tech-
nique (EqRM) [11, 1].

We want to test these three estimators using an approximation of the Green function
as a solution of (40). We recall that the Green function is the solution of (40)
(with c = 0) when the load f is the Dirac distribution. The Green function is
particularly interesting because it possesses a discontinuity in the first derivative at
the point where the Dirac distribution is located. To compute a solution of (40)
which approximates the Green function, we actually replace the Dirac distribution
located at x = x0 by the function f = kε defined by:

kε(x) =




C exp

( |x− x0|2
ε2

− 1

)−1

if |x− x0| < ε,

0 if |x− x0| ≥ ε

(42)
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Figure 5: Global effectivity index for the upper (left) and lower (right) bounds for
the case k = 3 and c = 0 (top), c = 1 (bottom).
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Figure 6: Global effectivity index for the upper and lower bounds, Dirichlet or
Neumann boundary conditions.

where the constant C is chosen to satisfy
∫

Ω
kε(x) dx = 1. (43)

In the following, we take ε = 0.1 for which the corresponding load f and “exact”
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solution u are plotted in Fig. 7. In this case, the exact solution is not known and
is approximated by an overkilled finite element solution ũh using 1500 degrees of
freedom.
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Figure 7: Representation of the load (left) and the exact solution (right).

In order to compute effectivity indices, we also calculate an accurate value of the
energy norm of u such as:

|||u||| ≈
√
|||ũh|||2 + |||ẽ|||2

where ẽ is the error in ũh estimated here by ERM. The “exact” error e in the
finite element solution uh will then be calculated by the formula (obtained from the
orthogonality property (8)):

|||e|||2 = |||u|||2 − |||uh|||2 ≈ |||ũh|||2 + |||ẽ|||2 − |||uh|||2 (44)

In Fig. (8), we present the different results obtained with the three error estimators.
In each case, the exact error is estimated using (44). We take k = 1 for the degree
of the finite element solution, p = 1 for the extra-degree used in SRM and ERM.
The first three graphs represent the distribution of the error estimate on the domain
[0, 1] for SRM, ERM, and ZZ using 30 elements. We observe that the approximation
error is concentrated in the middle elements, where the main variation in the first
derivative of the exact solution actually occurs. The last graph represents the be-
havior of the effectivity index for these three estimators when the number of degrees
of freedom is increased.

Our main conclusion is that the ZZ method is poorly accurate when we do not use
enough degrees of freedom (less than 50 degrees of freedom in our example). This
is due to the fact that the ZZ method is based on a recovery of the gradient of
the solution uh. However, the two other estimators seem to be quite stable. The
effectivity index with SRM stays close to 1.22, which is the value we obtained in
our previous experiments, whereas the effectivity index using ERM remains close to
unity.



Subdomain-Based Residual Method 19

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

5 10 15 20 25 30

el
em

en
ta

ry
 e

rr
or

element number

ERM

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

5 10 15 20 25 30

el
em

en
ta

ry
 e

rr
or

element number

SRM

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

5 10 15 20 25 30

el
em

en
ta

ry
 e

rr
or

element number

ZZ

0.6

0.8

1

1.2

1.4

0 50 100 150 200

ef
f. 

in
de

x

ndof

c = 0, k = 1

ERM
SRM
ZZ

Figure 8: Distribution of the error estimate with ERM (top left), SRM (top right)
and the ZZ (bottom left). Effectivity indices for each method (bottom right).

8 Numerical experiments in 2D

8.1 Performance of the estimator

We now investigate the performance of the estimator in the case of 2D problems.
We consider the squared domain Ω = {(x, y) ∈ R2, 0 < x < 1, 0 < y < 1} and solve
the problem

−∆u+ cu = f in Ω

u = 0 on ∂Ω
(45)

where c is a constant chosen as either 0 or 1. The load f is such that the exact
solution, plotted in Fig. 9, is given by:

u(x) = 0.0005 x2(1 − x)2y2(1 − y)2e10(x
2+y). (46)

The following figures present the results for different values of the parameters: the
degree of the finite element solution is chosen as k = 1 or 2 whereas the extra degree
used to compute the upper and lower bounds can take the value p = 0, 1, 2 or 3.
As in the 1D experiments, we show the effectivity indices of the error estimates.
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Figure 9: Representation of the exact solution u(x).

The results are shown in Figs. 10 and 11 for k = 1 and in Figs. 12 and 13 for k = 2.
In each case, we present the results using two methods of refinement: uniform
refinement on one hand, refinement based on the energy norm on the other hand.
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Figure 10: Global effectivity index for the upper (left) and lower (right) bounds for
the case k = 1 and c = 0 (top), c = 1 (bottom) in the case of uniform refinement.

We remark that the results in 2D are not the same as in 1D. First, the effectivity
indices are quite different for p = 1, 2 or 3, contrary to what we obtained in 1D.
However, the effectivity indices for the upper bound tend to the same values as
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Figure 11: Global effectivity index for the upper (left) and lower (right) bounds for
the case k = 1 and c = 0 (top), c = 1 (bottom) in the case of refinement based on
the energy norm.

in 1D when p is increased, that is 1.22 for k = 1 and 1.07 for k = 2. This is
an interesting point, because it suggests that these values may not depend on the
geometrical dimension, and could be the same in 3D. Another interesting remark is
the performance of the method regarding the lower and upper bounds when we use
a refinement based on the energy norm. In that case, the local problems saturate
very quickly with respect to p.

8.2 Comparison with other error estimators

In this section, we compare the SRM estimator with the Element Residual Method
with (EqRM) or without (ERM) equilibrated fluxes and the Zienkiewicz and Zhu
estimator (ZZ) based on a patch-recovery method of the gradient of uh. Note that
the ZZ estimator provides for an error estimate only, which in the following, is
compared with the upper bound estimates obtained from the SRM, ERM, and
EqRM estimators. We use again Problem (45) with c = 0. We choose k = 1 for
the degree of the finite element solution and take p = 1 for the extra degree used to
compute the SRM, ERM, and EqRM estimators. The results are shown in Fig. 14
on a sequence of uniformly refined meshes.
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Figure 12: Global effectivity index for the upper (left) and lower (right) bounds for
the case k = 2 and c = 0 (top), c = 1 (bottom) in the case of uniform refinement.

We observe that the SRM estimator actually provides for an upper bound on the
error even with a small number of degrees of freedom. Moreover the ZZ estimator is
not as accurate as the other methods, and emphasizes the idea that this estimator
is not reliable for particular problems. Regarding the lower bounds, the results are
comparable, although SRM seems to provide better effectivity indices with only a
few degrees of freedom.

8.3 Examples of mesh adaptation

The four methods we have compared in the previous section gave different estimators
of the error in the energy norm. We now study the element-wise distribution of the
error given by SRM (upper bound), SRM (lower bound) and ERM, by using these
error estimators in the adaptation process as described in Section 6. We again
consider Problem (45) with c = 0, k = 1 for the degree of uh, and p = 1 for the
extra degree used in SRM and ERM. Furthermore, we choose Cadap = 0.5 to drive
the adaptive process.

The adapted meshes obtained using the local contributions to the global error are
shown in Fig. 15. We start with the same initial mesh of 9 uniform squared elements,
and give the results after 2, 4, 6 and 8 iterations (from top to bottom).
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Figure 13: Global effectivity index for the upper (left) and lower (right) bounds for
the case k = 2 and c = 0 (top), c = 1 (bottom) in the case of refinement based on
the energy norm.
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Figure 14: Global effectivity index for the upper (left) and lower (right) bounds for
the SRM, ERM, EqRM, and ZZ error estimators.

We observe that the number of refined elements, after the same number of itera-
tions, is larger when we use SRM (upper bound) than when we use the two other
methods. This is due to the fact that the local contributions using SRM for the
upper bound are slightly larger than those obtained by SRM for the lower bound
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Figure 15: Adapted meshes based on the SRM upper bound estimator (left), SRM
lower bound estimator (middle), and ERM estimator (right).

or ERM. In Fig. 16, we compare the convergence rate of the adaptation algorithm
based on the error estimates provided either by SRM or ERM. In both cases, the
upper bound estimate has been considered. We observe that for a given number of
degrees of freedom, the exact error introduced by the three adaptation algorithms
is comparable. Figure 16 also shows the different behavior of the methods with
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respect to the number of elements refined at each iteration. For completeness, we
have added the results for SRM with p = 0.
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Figure 16: Graphs showing the exact error versus the number of degrees of freedom
(left) and number of degrees of freedom versus the number of iterations (right), for
SRM (p = 0 and p = 1) and ERM.

9 Conclusions and future work

In this work, we have investigated a subdomain-based residual method for a pos-
teriori error estimation inspired from the work of Carstensen and Funken [6] and
Morin, Nochetto, and Siebert [12]. However, our work is different in several aspects:
first, we show that it is not necessary to compute flux jumps at the element in-
terfaces for the calculation of the residual. Secondly, we have tested the estimator
on quadrilateral elements rather than triangles and provided a complete proof of
the weighted Poincaré inequality for this case (see the Appendix). Moreover, we
have proposed a method to recover a lower bound on the error by a simple post-
processing of the error estimator. We also show that reasonable error estimates can
be obtained by using polynomial test functions of same degree as the ones used to
compute the finite element solution. This is actually an important consideration as
the technology can then be implemented in any existing finite element codes with-
out having to introduce new polynomial shape functions of higher degrees, in other
words, without having to drastically modify the existing data structure. Finally,
the efficiency of the upper bound and lower bound estimators is demonstrated on
1D and 2D elliptic problems and compared to other existing methods (i.e the ZZ
method, the element residual method and the equilibrated residual method). The
subdomain-based residual method provides reliable and robust error estimates at
reasonable cost for these test problems. However, additional numerical experiments
should be performed to draw further conclusions about the quality of this error
estimator for broader classes of problems. For example, it would be interesting to
verify how the error estimator behaves for large values of c or more generally in the
presence of boundary layers.
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Figure 17: On the left, boundary patch; on the right, reference element Q = [0, 1]×
[0, 1] divided into two triangles U and L.

Nevertheless, this new approach presents certain attractive features that need to
be investigated in more detail. In particular, the method seems suitable for 3D
applications as it appears to be much easier to implement than the equilibrated
residual method, especially if the mesh contains hanging nodes. However, a question
which needs to be addressed is whether the weighted Poincaré inequality holds
for hexahedral or brick elements. Another issue is whether the method can be
easily applied to linear elasticity and Stokes problems. Additional investigations
on mesh adaptation (refinement/derefinement) are advisable as we have seen that
for this method element-wise or patch-wise contributions to the error estimates can
be computed. Finally, it would certainly be interesting to check how the global
error estimator can be used for a posteriori estimation of the error in ”quantities of
interest”.

Appendix

In this Appendix we present the proof of Lemma 2 in the case of a 2D mesh of
quadrilaterals. Two different proofs are provided, one for interior patches and the
other for boundary patches.

Boundary patch

Let us consider a patch ωi on the boundary (see Fig. 17), with weighting function
φi that equals one in xi and vanishes on ∂ωi \ ∂Ω, and a function f vanishing on
∂Ω. Each of the two quadrilaterals Q1 and Q2 can be mapped onto the reference
square Q = [0, 1] × [0, 1] by a bilinear transformation, the node xi being mapped to
(1, 1). The weight φi is then transformed into φ̂ = xy. Then, by a scaling and a
density argument, it is sufficient to prove the inequality

∫

Q
f2(x, y) dxdy ≤ C

∫

Q
|∇f(x, y)|2xy dxdy (47)

for any smooth function f vanishing either on y = 1 or x = 1.
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Let us consider the case where f = 0 at y = 1 (the other case can be proved in a
similar manner). We establish the proof of (47) in two steps. The basic idea of this
proof, which is to integrate by parts along a line y−x = constant, is borrowed from
the paper by Carstensen et al. [6, Lemma 5.3].

Step 1. We first prove the inequality
∫

U
f2(x, y) dxdy ≤ C1

∫

U
|∇f(x, y)|2xy dxdy (48)

where U is the upper triangle shown in Fig. 17.

By introducing the change of variables x′ = x and y′ = y− x, which transforms the
triangle U = {(0, 0), (1, 1), (0, 1)} into the triangle U ′ = {(0, 0), (1, 0), (0, 1)}, and by
integrating by parts along each line y ′ = constant, we can write

∫

U
f2(x, y) dxdy =

∫ 1

0
dy′
∫ 1−y′

0
f2(x′, y′) dx′

=

∫ 1

0
dy′

[
f2(x′, y′)x′

∣∣∣
1−y′

0
−
∫ 1−y′

0
2f

∂f

∂x′
x′ dx′

]

= −
∫

U
2f

(
∂f

∂x
+
∂f

∂y

)
x dxdy.

The boundary term vanishes at both ends. In particular, the line x′ = 1 − y′

corresponds to y = 1 and f
∣∣
y=1

= 0. We finally have

∫

U
f2 dxdy ≤ 1

2

∫

U
f2 dxdy + 2

∫

U

(
∂f

∂x
+
∂f

∂y

)2

x2 dxdy

≤ 1

2

∫

U
f2 dxdy + 4

∫

U
|∇f |2xy dxdy

where, in the last inequality, we have used the discrete Cauchy inequality
∑n

i=1 |ai| ≤√
n
(∑n

i=1 a
2
i

)1/2
and the fact that x2 ≤ xy, ∀ (x, y) ∈ U . This completes the proof

of inequality (48) with a constant C1 = 8.

Step 2. We now prove the inequality
∫

L
f2(x, y) dxdy ≤ C2

∫

Q
|∇f(x, y)|2xy dxdy (49)

where L is the lower triangle shown in Fig. 17. Indeed we have
∫

L
f2(x, y) dxdy =

∫ 1

0
dx

∫ x

0
f2(x, y) dy

=

∫ 1

0
dx

[
f2(x, y)y

∣∣∣
x

0
−
∫ x

0
2f
∂f

∂y
y dy

]

≤
∫ 1

0
f2(x, x)x dx +

1

2

∫

L
f2 dxdy + 2

∫

L

(
∂f

∂y

)2

y2 dxdy,
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thus leading to the inequality

∫

L
f2(x, y) dxdy ≤ 2

∫ 1

0
f2(x, x)x dx + 4

∫

L
|∇f(x, y)|2xy dxdy (50)

where, again, we have exploited the fact that y2 ≤ xy, ∀ (x, y) ∈ L.

To estimate the boundary term
∫ 1
0 f

2(x, x)x dx appearing in the previous inequality,
we proceed as follows:

∫

U
f2(x, y) dxdy =

∫ 1

0
dy

∫ y

0
f2(x, y) dx

=

∫ 1

0
dy

[
f2(x, y)x

∣∣∣
y

0
−
∫ y

0
2f
∂f

∂x
x dx

]

=

∫ 1

0
f2(y, y)y dy −

∫

U
2f
∂f

∂x
x dxdy.

Hence, ∫ 1

0
f2(y, y)y dy =

∫

U
f2(x, y) dxdy +

∫

U
2f
∂f

∂x
x dxdy

≤ 2

∫

U
f2(x, y) dxdy +

∫

U
|∇f |2xy dxdy

≤ (2C1 + 1)

∫

U
|∇f |2xy dxdy

(51)

where, in the last inequality, we have employed relation (48). Finally, by inserting
(51) in (50), we obtain (49) with C2 = 2(2C1 + 1), and, by summing (48) and (49),
we finally establish the statement claimed earlier.

Interior patch

Let us now consider an interior patch ωi of quadrilaterals (see Fig. 18). In this case,
the weight function φi equals one at xi and vanishes on ∂ωi, while the function f is
such that

∫
ωi
fφi = 0. The patch ωi can be mapped onto the reference patch ω̂ =

[−1, 1]2, shown in Fig. 18, by a piecewise bilinear transformation Fi : ω̂ → ωi. The
node xi is mapped to (0, 0) and the weight φi is transformed as φ̂ = (1−|x|)(1−|y|).
Then, by a scaling and a density argument, it is sufficient to prove the inequality

∥∥∥∥f − 1

µ

∫

ω̂
fφ̂Ji dω

∥∥∥∥
2

L2(ω̂)

≤ C

∫

ω̂
|∇f |2φ̂ dω, µ =

∫

ω̂
φ̂Ji dω, (52)

for any smooth function f , with a constant C that may depend on the regularity κi

of the patch ωi but is otherwise independent of hi. We have denoted Ji = det(∇Fi).
Actually, the function g = f− 1

µ

∫
ω̂ fφ̂Ji satisfies the condition

∫
ωi
gφi =

∫
ω̂ gφ̂Ji = 0

and (52) reads also

‖g‖2
L2(ω̂) ≤ C

∫

ω̂
|∇g|2φ̂ dω.
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Figure 18: Interior patch of quadrilaterals (left) and patch of reference (right). Each
square in the patch of reference has been divided in two triangles.

We will prove the inequalities

∥∥∥∥f − 1

µ

∫

ω̂
fφ̂Ji dω

∥∥∥∥
2

L2(Tj)

≤ Cj

∫

ω̂
|∇f |2φ̂ dω, ∀ j = 1, . . . , 8, (53)

from which (52) is easily obtained by summing over the indices j. The proof is
carried out only for the triangle T1, the other cases being obtained in a similar
manner.

Let us introduce the change of variables x′ = 1 − x and y′ = x − y, which trans-
forms the triangle T1 = {(0, 0), (1, 0), (1, 1)} into {(1, 0), (0, 1), (0, 0)}. Then, for any
smooth function g on T1, we have

∫

T1

g2(x, y) dxdy =

∫ 1

0
dy′
∫ 1−y′

0
g2(x′, y′) dx′dy′

=

∫ 1

0
dy′

[
g2(x′, y′)x′

∣∣∣
1−y′

0
−
∫ 1−y′

0
2g
∂g

∂x′
x′ dx′

]

=

∫ 1

0
g2(1 − y′, y′)(1 − y′) dy′ + 2

∫

T1

g

(
∂g

∂x
+
∂g

∂y

)
(1 − x) dxdy

≤
∫ 1

0
g2(x, 0)(1 − x) dx

+
1

2

∫

T1

g2 dxdy + 4

∫

T1

|∇g|2(1 − x)(1 − y) dxdy.

By taking g = f − 1
µ

∫
ω̂ fφ̂Ji dω, we obtain the inequality

∥∥∥∥f − 1

µ

∫

ω̂
fφ̂Ji dω

∥∥∥∥
2

L2(T1)

≤ 2

∫ 1

0

(
f − 1

µ

∫

ω̂
fφ̂Ji dω

)2
∣∣
y=0

(1 − x) dx+ 8

∫

T1

|∇f |2φ̂ dω
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We now need to estimate the boundary term appearing on the right-hand side of
the previous inequality.

∫ 1

0

(
f − 1

µ

∫

ω̂
fφ̂Ji dω

)2
∣∣
y=0

(1 − x) dx

=

∫ 1

0

1

µ2



∫∫

ω̂

(f(x, 0) − f(t, s)) φ̂(t, s)Ji(t, s) dtds




2

(1 − x) dx

=
1

µ2

∫ 1

0
(1 − x) dx



∫∫

ω̂

(∫ 0

s

∂f

∂v
(x, v) dv +

∫ x

t

∂f

∂u
(u, s) du

)
φ̂(t, s)Ji(t, s) dtds




2

≤ 2

µ2
max

ω̂
|Ji|2 (I1 + I2) ≤ C̃ (I1 + I2)

where

I1 =

∫ 1

0
(1 − x)



∫∫

ω̂

∣∣∣∣
∫ 0

s

∂f

∂v
(x, v)φ̂(t, s) dv

∣∣∣∣ dtds




2

dx,

I2 =

∫ 1

0
(1 − x)



∫∫

ω̂

∣∣∣∣
∫ x

t

∂f

∂u
(u, s)φ̂(t, s) du

∣∣∣∣ dtds




2

dx.

Observe that the constant C̃ depends only on the regularity κi of the patch ωi, since
|Ji| ≤ Ch2

i and µ ≥ Cρ2
i

∫
ω̂ φ̂.

We separately analyze the two terms I1 and I2. We start with I2:

I2 =

∫ 1

0
(1 − x)dx



∫ 1

−1
dt

∫ 1

−1

∣∣∣∣∣∣

∫ x

t

∂f

∂u
(u, s)

√
φ̂(u, s)

φ̂(t, s)√
φ̂(u, s)

du

∣∣∣∣∣∣
ds




2

≤
∫ 1

0
(1 − x)dx



∫ 1

−1



∫∫

ω̂

∣∣∣∣
∂f

∂u
(u, s)

∣∣∣∣
2

φ̂(u, s) duds




1

2
(∣∣∣∣∣

∫ 1

−1

∫ x

t

φ̂2(t, s)

φ̂(u, s)
duds

∣∣∣∣∣

) 1

2

dt




2
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that is,

I2 ≤



∫∫

ω̂

|∇f |2φ̂ dω



∫ 1

0
(1 − x)dx

[∫ 1

−1
dt

(∫ 1

−1
ds

∣∣∣∣
∫ x

t

(1 − |t|)2(1 − |s|)
1 − |u| du

∣∣∣∣
) 1

2

]2

≤ C1

∫

ω̂
|∇f |2φ̂ dω

where the constant C1 is given by

C1 =

∫ 1

0
(1 − x) dx

[∫ 1

−1
(1 − |t|) dt

(∫ 1

−1
(1 − |s|) ds

∣∣∣∣
∫ x

t

1

1 − |u| du
∣∣∣∣
) 1

2

]2

≤
∫ 1

0
(1 − x) dx

[∫ 1

−1
(1 − |t|) [− log(1 − |x|) − log(1 − |t|)]

1

2 dt

]2

< +∞.

We now consider the term I1:

I1 =

∫ 1

0
dx



∫ 1

−1
dt

∫ 1

−1
ds

∣∣∣∣∣∣

∫ 0

s

∂f

∂v
(x, v)

√
φ̂(x, v)

φ̂(t, s)
√

1 − x√
φ̂(x, v)

dv

∣∣∣∣∣∣




2

≤
∫ 1

0
dx



∫ 1

−1
dt

∫ 1

−1
ds

(∫ 1

−1

∣∣∣∣
∂f

∂v
(x, v)

∣∣∣∣
2

φ̂(x, v) dv

) 1

2

(∣∣∣∣∣

∫ 0

s

φ̂2(t, s)(1 − |x|)
φ̂(x, v)

dv

∣∣∣∣∣

) 1

2




2

≤
∫ 1

0
dx

(∫ 1

−1

∣∣∣∣
∂f

∂v
(x, v)

∣∣∣∣
2

φ̂(x, v) dv

)

[∫ 1

−1
dt

∫ 1

−1
ds

(∣∣∣∣
∫ 0

s

(1 − |t|)2(1 − |s|)2
(1 − |v|) dv

∣∣∣∣
) 1

2

]2

≤ C2

∫

ω̂
|∇f |2φ̂ dω

where the constant C2 is given by

C2 =

[∫ 1

−1
(1 − |t|) dt

∫ 1

−1
(1 − |s|) ds

(∣∣∣∣
∫ 0

s

1

1 − |v| dv
∣∣∣∣
) 1

2

]2

=

(∫ 1

−1
(1 − |s|) [− log(1 − |s|)]

1

2 ds

)2

< +∞
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Observe that the constant C2 is bounded thanks to the presence of the weight (1−x).

We finally obtain

∫ 1

0

(
f − 1

µ

∫

ω̂
fφ̂ dω

)2
∣∣
y=0

(1 − x) dx ≤ C̃(C1 + C2)

∫

ω̂
|∇f |2φ̂ dω.

Then, inequality (53) is satisfied on the triangle T1. An analogous proof holds for
the other triangles, thus leading to the final result.
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